

2021年4月8日

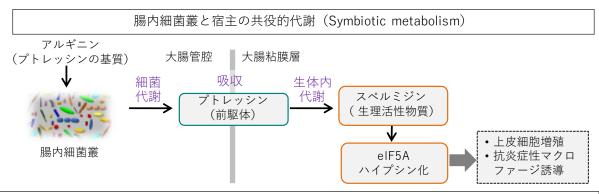
報道関係者各位

慶應義塾大学

腸内細菌由来ポリアミンが大腸粘膜を健全に保つことを発見 ー腸上皮細胞やマクロファージに作用して腸炎を防止ー

慶應義塾大学、協同乳業株式会社を中心とする研究グループは、腸内細菌由来のポリアミンが腸上 皮細胞やマクロファージに作用して、大腸粘膜の健全性の維持に重要な役割を担うことを明らかにし ました。これは慶應義塾大学薬学部の長谷耕二(はせ こうじ)教授、協同乳業株式会社の中村篤央研 究員(慶應義塾大学薬学部 共同研究員)・松本光晴主幹研究員を中心とする研究グループの成果です。

ポリアミン(プトレッシン、スペルミジン、スペルミン)は、全生物の細胞内に普遍的に存在し、細胞増殖や機能の維持に必須の成分です。腸内細菌叢は重要なポリアミンの供給源の一つと推測されています。松本主幹研究員らは、これまでに腸管内腔のポリアミン濃度が高いほどマウスの寿命が延伸することを報告してきました。一方で、腸内細菌叢由来のポリアミンが実際にどの程度体内に取り込まれており、どのような生理作用を担っているのかについては詳しく分かっていませんでした。


本研究では、プトレッシンを産生する野生型大腸菌(プトレッシン産生菌)とプトレッシン合成系遺伝子を破壊した非産生大腸菌(非産生菌)をそれぞれ単独定着させたノトバイオートマウス*1を作製し、腸内細菌由来プトレッシンの影響を評価しました。その結果、プトレッシン産生菌が定着したマウスでのみ、大腸上皮細胞の増殖促進と大腸粘膜組織の抗炎症性マクロファージ*2の分化誘導が認められました。また、外因性のプトレッシンがこれらの細胞内に取り込まれスペルミジンへ変換されることや、上記の効果が、このスペルミジンの関与する真核生物翻訳伸長因子 eIF5A のハイプシン化*3を介して生じることが明らかになりました。さらに、これらのノトバイオートマウスに薬剤で大腸炎を誘発させた結果、プトレッシン産生菌定着マウスは非産生菌定着マウスと比較し、腸炎病態スコアの緩和および生存率の上昇が認められました。

以上より、腸内細菌叢の代謝産物であるプトレッシンは、生体に移行し細胞内でスペルミジンへと変換され、スペルミジンの eIF5A を介した作用により大腸粘膜層の健全化に寄与することが証明されました。また、これは腸内細菌叢と宿主の両者が関与する『共生代謝(symbiotic metabolism)』による生理活性物質産生という概念の初めての提示となります。

本研究成果は、2021年4月8日に国際学術誌『Nature Communications』(電子版)に掲載されました。

1. 本研究のポイント

- 腸内細菌由来プトレッシンは、大腸上皮細胞の増殖を促進し、大腸粘膜の抗炎症性マクロファージの 分化を誘導します。
- 腸内細菌由来のプトレッシンは、上記細胞内に取り込まれスペルミジンに変換されます。
- ・細胞内で増加したスペルミジンが eIF5A のハイプシン化を介して上記の生理活性が誘導されます。
- 腸内細菌由来のプトレッシンは、実験的大腸炎の症状を緩和します。
- これらの知見は腸内細菌と宿主の共生代謝による生理活性物質産生という新たな概念を提示するものです(図1)。

図1. 本研究の概念図.

プトレッシンの基質であるアルギニンを腸内細菌叢が代謝し、プトレッシンを産生することをすでに報告している。この腸内細菌叢由来のプトレッシンは、宿主細胞に吸収され、生体内で更なる代謝をうけることで生理活性物質であるスペルミジンに変換され、eIF5Aのハイプシン化を介し生理活性を誘導する。

2. 研究体制

本研究は慶應義塾大学薬学部の長谷耕二教授、協同乳業株式会社研究所の中村篤央研究員、松本光晴主幹研究員、近畿大学生物理工学部の栗原新准教授、慶應義塾大学先端生命研究所の福田真嗣特任教授、順天堂大学医学部の斉木臣二准教授の各グループとの共同研究として実施されました。

3. 研究の背景

腸管腔内には40兆個にもおよぶ細菌が存在し、腸内細菌叢を形成しています。腸内細菌の活動の結果、産生される代謝産物には、宿主の疾病や健康促進に影響を及ぼす成分が含まれており、近年盛んに研究されています。

ポリアミンは、全ての生物の細胞内に含まれる普遍的な生理活性物質で、核酸やタンパク質の安定化、細胞の増殖や分化、オートファジーの促進など様々な機能を有しており、正常な細胞機能の維持に必須の物質です。しかしながら、加齢により合成能が低下することが知られています。一方で、生体は、生体外から摂取するポリアミン(外因性ポリアミン)を利用することも可能で、ポリアミンの経口投与による、抗炎症効果、心疾患保護効果、メタボリックシンドローム改善効果、寿命延伸効果などが報告されています。ほ乳類の場合、主要なポリアミンは、プトレッシン、スペルミジン、スペルミンであり、この順に生合成されます。外因性ポリアミンは食事および腸内細菌叢由来ですが、経口摂取されたほぼ全てのポリアミンは小腸で吸収され、大腸管腔内のポリアミンのほぼ全てが腸内細菌叢由来です。我々は、無菌マウスと通常菌叢マウスの糞便解析から、腸内細菌がプトレッシンとスペルミジンを産生することを確認すると共に、アルギニンとビフィズス菌を用いた腸内細菌由来のポリアミン産生誘導により、マウスの寿命延伸効果等を報告してきました。しかしながら、腸内細菌由来ポリアミンの大腸組織への影響を細胞および分子レベルでは解明できていませんでした。

4. 研究の内容・成果

腸管腔内プトレッシン濃度の異なるマウスの作製

本研究では、ヒトの大腸管腔内で最も濃度が高く、合成経路上、最初に生合成されるポリアミンであるプトレッシンに着目し、プトレッシンを産生する野生型大腸菌 (PUT 産生菌) とプトレッシン合成酵素遺伝子を破壊した大腸菌 (非産生菌) をそれぞれ無菌マウスへ単独定着させたノトバイオートマウスを作製し、大腸管腔内のプトレッシン濃度のみが異なるモデルを構築しました。(図 2)。

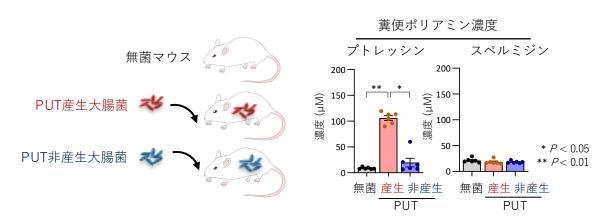


図2. 大腸管腔内のプトレッシン濃度に差のあるマウスモデルの確立.

プトレッシンを産生する野生型大腸菌(PUT産生菌)とプトレッシン合成酵素遺伝子を破壊した大腸菌(非産生菌)をそれぞれ無菌マウスへ単独定着させ、ノトバイオートマウスを作成した(左図)。PUT産生菌定着マウスにおいてのみ、糞便プトレッシン濃度が有意に高いことが確認された。一方で、スペルミジン濃度に差は見られなかった。

腸内細菌由来プトレッシンが大腸上皮細胞中のポリアミン濃度を増加させる

ノトバイオートマウスの大腸上皮組織に対し、増殖中の細胞を識別する EdU アッセイ*4 を実施したところ、PUT 産生菌定着マウスの大腸上皮組織では、非産生菌定着マウスや無菌マウスと比較し、細胞増殖が盛んであることが認められました。(図 3)。大腸上皮細胞中のポリアミン濃度を測定したところ、PUT 産生菌を定着させたマウスは、非産生菌定着マウスや無菌マウスと比較し、大腸上皮細胞のプトレッシンと共にスペルミジン濃度も高いことが確認されました(図 3)。

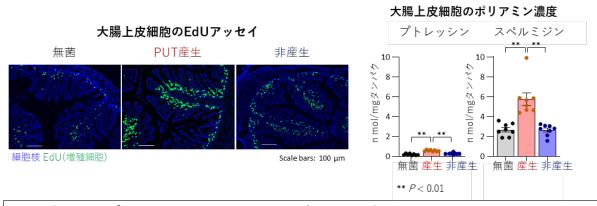


図3 腸内細菌由来プトレッシンによる大腸上皮細胞のポリアミン濃度上昇と増殖細胞の増加 大腸上皮組織のEdUアッセイの染色像(左)。細胞核は青でEdUを取り込んだ増殖中の細胞は緑色で染色されている。 PUT産生菌の定着したマウスでは細胞の増殖が盛んであることがわかる。大腸上皮細胞中のポリアミン濃度を示す(右)。 PUT産生菌の定着したマウスでは、大腸上皮中のプトレッシン濃度、スペルミジン濃度共に増加していた。

大腸上皮細胞は、細胞外のプトレッシンを取り込みスペルミジンへ変換する

大腸上皮細胞が外因性プトレッシンを取り込んでいるのかを検証するために、腸管オルガノイド*5と安定同位体プトレッシン用い、細胞外のプトレッシンの取り込みおよび細胞内での代謝を追跡しました。その結果、大腸上皮オルガノイドは細胞外のプトレッシンを取り込み、細胞内でスペルミジンに変換していることがわかりました。

大腸上皮細胞の増殖にはスペルミジンを介した eIF5A のハイプシン化が必須

大腸上皮オルガノイド内でスペルミジンへの変換が認められたことから、大腸上皮オルガノイドの成長に対するスペルミジンの影響を検証しました。その結果、薬剤によるスペルミジンの合成阻害が、大腸上皮オルガノイドの成長を抑制すること、および真核生物翻訳伸長因子 eIF5A のハイプシン化と呼ばれる翻訳後修飾を抑制することが認められました(図 4)。次に大腸上皮オルガノイドの成長にeIF5A のハイプシン化が必要であることを確認するため、ハイプシン化の阻害剤をオルガノイド培地に添加したところオルガノイドの成長が抑制されました。これらのことから、大腸上皮細胞の増殖にはスペルミジンが必須であり、スペルミジンの作用の一旦は、eIF5A のハイプシン化を介したものであることが示されました。

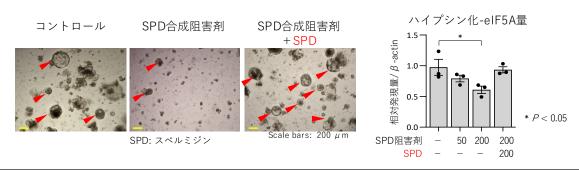


図4 大腸上皮オルガノイドの成長に対するスペルミジン合成阻害の影響

スペルミジン合成阻害剤のオルガノイド培地への添加により、オルガノイドの成長が抑制され、外因性のスペルミジン(SPD)の添加により回復した(左: 代表的なオルガノイドの顕微鏡像, 矢頭はオルガノイドを指す)。オルガノイド中のハイプシン化-elF5A量はスペルミジンの合成阻害剤の容量依存的に減少し、外因性のスペルミジンの添加により回復した(右)。

腸内細菌由来プトレッシンが大腸組織の抗炎症性マクロファージを誘導する

次に、大腸粘膜固有層に存在する免疫細胞への影響について調べました。腸管では CX_3CR1^{*6} の発現強度と $Ly6C^{*7}$ の発現の有無によって、抗炎症活性を示す CX_3CR1^{high} マクロファージと、炎症性の CX_3CR1^{low} マクロファージ/単球*8 という 2 つの集団が存在します。そこで、これらマクロファージの集団に対する腸内細菌由来のプトレッシンの影響を検証しました。その結果、PUT 産生菌定着マウスでは、無菌マウス、非産生菌定着マウスと比較し、 CX_3CR1^{high} 抗炎症性のマクロファージ数が多いことが確認されました。この結果から、腸内細菌由来のプトレッシンが大腸粘膜固有層中の CX_3CR1^{high} 抗炎症性のマクロファージを誘導することが見出されました(図 5)。

さらに、マクロファージも大腸上皮細胞と同様に細胞外のプトレッシンを取り込み、細胞内でスペルミジンに変換していることが認められました。また、培地へのプトレッシンの添加により CX₃CR1^{high} 抗炎症性マクロファージの増加が観察されました。この効果には、細胞内スペルミジンの増加に伴うeIF5A のハイプシン化が必須であることがわかりました。

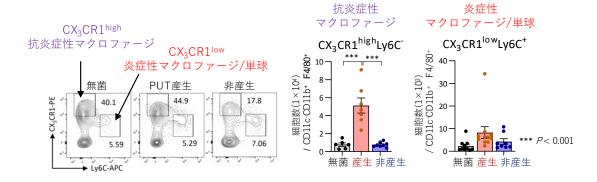


図5 腸内細菌由来プトレッシンによる抗炎症性マクロファージの増加

フローサイトメトリーによる大腸粘膜固有層中のマクロファージ集団の代表的な解析結果(左)とそれぞれのマクロファージ集団の細胞数(右)。PUT産生菌定着マウスの大腸粘膜固有層では、 CX_3CR1^{hig} h抗炎症性マクロファージが非産生菌定着マウスや無菌マウスと比較し、多いことが認められた。

腸内細菌由来プトレッシンは実験的大腸炎を緩和する

腸内細菌由来ポリアミンによる大腸上皮細胞の増殖と抗炎症性マクロファージの増加は、炎症性腸疾患の抑制への有効性が予測されました。そこで、それぞれのノトバイオートマウスに2%デキストラン硫酸ナトリウム溶液を自由飲水にて投与することで実験的大腸炎を発症させ、腸内細菌由来プトレッシンの腸炎に対する影響を検証しました。その結果、PUT 産生菌定着マウスでは、非産生菌定着マウスと比較し、大腸炎の症状の一つである大腸長の短縮、大腸炎の病態スコアが緩和され、生存率も有意に高くなりました(図 6)。

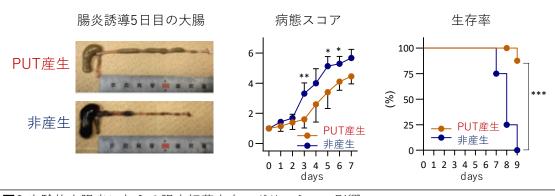


図6 実験的大腸炎に与える腸内細菌由来のポリアミンの影響 非産生菌定着マウスでは、大腸炎の症状の一つである大腸長の短縮と出血が見られた(左)。PUT産生菌 定着マウスでは、非産生菌定着マウスと比較し、病態スコア(真中)と、生存率が改善した(右)。

5. 結論

以上の結果から、本研究の対象である腸内細菌由来のプトレッシンは、宿主における生理活性物質スペルミジンの前駆体として重要で、宿主細胞でスペルミジンに変換されることで、eIF5Aのハイプシン化を介し大腸上皮細胞の増殖や抗炎症性マクロファージの増加といった生理活性を誘導することが分かりました。これは腸内細菌叢と宿主の連動による共役的な代謝(symbiotic metabolism)による生理活性物質産生という新たな概念のはじめての提示となります(図1)。

本研究結果は、大腸粘膜層の異常に起因する種々の疾病に対し、腸内細菌由来ポリアミンを介した 予防法・治療法の開発につながることが期待されます。本研究グループは、アルギニンとプロバイオティクスを利用した腸内ポリアミン濃度増加技術を開発済みで、その機序も解明済みであることから、 早期の社会実装が期待できます。

6. 特記事項

本研究は日本医療研究開発機構・革新的先端研究開発事業「微生物叢と宿主の相互作用・共生の理解と、それに基づく疾患発症のメカニズム解明」、ならびに、日本学術振興会・学術変革領域 A「物質共生」 などの支援を受けて実施しました。

<原論文情報>

著者: Atsuo Nakamura*, Shin Kurihara, Daisuke Takahashi, Yutaka Nakamura, Shunsuke Kimura, Wakana Ohashi, Masayoshi Onuki, Aiko Kume, Yukihiro Furusa, Yuuki Obata, Shinji Fukuda, Yukiko Sasazawa, Shinji Saiki, Mitsuharu Matsumoto†, Koji Hase† (*筆頭著者、†責任著者)

論文タイトル: Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon.

雜誌名:『Nature Communications』(電子版)

DOI: 10.1038/s41467-021-22212-1

<用語説明>

- *1 ノトバイオートマウス: 特定の微生物のみが定着した状態のマウスのこと。
- *2 抗炎症性マクロファージ: IL-10 などの炎症抑制に働くタンパク質を産生するマクロファージであり、腸管粘膜に比較的多く存在する。マーカーとして CX₃CR1 を高発現する。
- *3ハイプシン化:スペルミジンのブチルアミン部分を特異的リジン残基へ転移後、水酸化される eIF5A に特有の翻訳後修飾。eIF5A はハイプシン化によって活性型となる。
- *4 EdU アッセイ: 5-ethynil-2 '-deoxyuridine (EdU) はチミジンの代わりに DNA に取り込まれる。 そのため EdU 取り込み細胞は DNA 合成中すなわち増殖中の細胞であることを示す。
- *5 腸管オルガノイド: 培養皿の中で3次元的に作られた中空の腸上皮細胞塊であり、実際の腸管上皮層と同様の細胞構成と機能を示す。
- *6 CX₃CR1: マクロファージを含む免疫細胞に発現している細胞表面マーカー。細胞の移動(遊走)に 関わる細胞分泌成分(ケモカイン)の受容体。
- *7 Ly6C: 主にリンパ球や単球、マクロファージなどに発現している細胞表面マーカー。単球では高発現しており、マクロファージへ分化することで発現は減弱する。
- *8 単球: 免疫細胞の一種で、マクロファージや、樹状細胞に分化する。
- ※ご取材の際には、事前に下記までご一報くださいますようお願い申し上げます。
- ※本リリースは文部科学記者会、科学記者会、各社科学部等に送信させていただいております。

【本発表資料のお問い合わせ先】

慶應義塾大学薬学部 生化学講座

教授 長谷 耕二 (はせ こうじ)

TEL: 03-5400-2484

E-mail: hase-kj@pha.keio.ac.jp

【本リリースの発信元】

慶應義塾広報室(豊田)

TEL: 03-5427-1541 FAX: 03-5441-7640

E-mail: m-pr@adst.keio.ac.jp

https://www.keio.ac.jp/